

Retrieval and Repackaging of RH-TRU Waste- GENERAL PRESENTATION MODULAR HOT CELL TECHNOLOGY

Paul Murray
Oak Ridge, TN
July 29, 2009

ADAPTING AREVA'S TECHNOLOGY

► AREVA Worldwide

- Nuclear Lifecycle
- Transmission & Distribution
- Renewable Energy

> AREVA US

- Nuclear Fuel Services
- Nuclear Engineering Services

► AREVA Federal Services, LLC. (AFS)

- Federal Services
- Major Projects
 - MOX-MFFF
 - Yucca Mountain Project
 - DUF6
 - Plateau Remediation Contract
 - Washington River Closure Project
 - SRS Liquid Waste

ADAPTING AREVA'S TECHNOLOGY

►AFS Technology Provider

- SRS MOX Technologies (Adaptation of European Technology)
- SRS Enhanced Chemical Cleaning
- ART Cold Crucible Induction Melting
- Hanford Lithium Hydrotalcite
- Hanford Mobile Hot Cell

Hanford CH PRC Mobile Hot Cell

► AFS – Pre-Selected Major Subcontractor to CH2M Hill

- Provide Mobile Hot Cell as a Technology Driven Solution to Clean-up challenge
- Step change to current baseline procedure
- Proven Technology with operations Lessons Learned
- Demonstrated re-use and mobility
- Demonstrated capability to transition to future missions
- Process waste on-site without building new facility
- Minimize D&D activities through small foot print

MOBILE HOT CELL PROGRESSIVE TECHNOLOGY

- FIRST GENERATION: ERFB UNIT (MARCOULE, FRANCE)
 - First application 1996 / 2006 (RH-TRU bituminized waste drums)
 - Second application 2008 (Clean Up concrete vault)
- ► SECOND GENERATION: ERCF UNIT (MARCOULE, FRANCE)
 - Current application 1996 / 2010 (Vaults 1 and 2)
 - Future application Post 2010 (Vaults 3 and 4)
- ► THIRD GENERATION : FOSSEA
 - Construction Phase
- ADAPTION TECHNOLOGY TO PRC: HANFORD
 - Safety Crosswalk Evaluation
 - Initiated Design Phase

First Generation: ERFB Bituminized Waste Drum Retrieval Facility

Purpose of the ERFB Unit

Retrieve, Characterize, Process and Repackage

- 6,200, 55 gallon aging ML and RH-TRU bituminized waste drums stored in 35 belowgrade concrete vaults
 - Waste drums were produced between 1966 and 1978 (bituminization of liquid waste produced during the operation of the Marcoule UP1 Spent Nuclear Fuel Reprocessing Plant)
- Repackaged into new stainless steel over-packs
- Placed into transport casks and transported by truck to a safe on-site storage facility.

ERFB: Functional Diagram 1: Drum Retrieval, Monitoring and Processing

Photo caption - © Copyright

ERFB Marcoule – A Modular Free Standing Unit

ERFB is a modular, autonomous and contained unit comprising 7 cells welded and bolted around a metallic structure.

ERFB Marcoule - Processing Area

▶ All operations are remotely controlled from an adjacent control room (right side of the picture).

ERFB Marcoule - A Mobile Unit

▶ ERFB moving on rails laid on both sides of the storage vaults.

ERFB Marcoule – Operation Records

- Started operations on January 21, 2000
- Operated in 2 shifts, 5-days/wk (4 person crew + supervisor + an HPT)
- ► Retrieved, processed and repacked 37 waste drums per week
- No overpack, atmospheric, or surface contamination detected outside of the processing cell
- No personnel contamination was detected
- Operated until November 2006
- Results:
 - TECHNOLOGY APPLICATION ON A NEW PROJECT: ERCF
 - REUSE OF THE EXISTING MOBILE HOT CELL

Second Generation: ERCF Bituminized Waste Drum Retrieval Facility

UP1 Dismantling – ERCF

- Retrieval, Characterization and Repackaging of ILLW radioactive wastes conditioned in bitume drums :
 - Conducted Studies: (2004 2007)
 - Developed Safety Reports and Analyses
 - Conducted Conceptual Study of the process equipment <u>based on ERFB Design and</u> <u>Lessons Learned</u>
 - Design studies (process, electrical, nuclear ventilation, I&C, handling and packaging)
 - Constructed MHC
 - Tested MHC (inactive and active)
 - Operating on Vaults 1 and 2 since September, 2007
 - Transfer to Vaults 3-4

Flow Sheet Diagram

- ▶ 1 Retrieve drums from the blockhouse
- 2 Placement of drums on conveyor
- ▶ 3 Monitor radioactivity and dose rate
- ▶ 4 Insert drum into an overpack
- ▶ 5 Pre-placed in a transport cask
- ► 6 Unload transport cask

GENERAL OVERVIEW ERCF

Remote Control Room - 102

Process and Retrieval Cell - 101

Packaging Cell – 103

Electrical Rooms – 106/111

> Ventilation (105) and Filtration (108) Rooms

Blockhouse

Maintenance Air Lock (Access forklift truck) 113

Modular Design

- Assembled and set to work off site.
- Mobile Hot Cells for process with risk of contamination and/or irradiation
- Individual unit for non nuclear equipment (Electrical panels, utilities,...)
- Footbridges
- Dimension compatible with transport by truck

Process Hot Cell

High part of Transfer and Packaging

Cell

Installation of

Remote Control Room

Retrieve Drums From Blockhouse

REMOTE CONTROL ROOM

Movement of Modules

- Move facility as a mono-block for short distances
- Assumptions for moving the facility:
 - Cleanup of the ERCF after Vaults 1 and 2 mission completion
 - Disassemble fragile or delicate equipment (e.g. personnel air locks, footbridges)
 - Removal of Ventilation, Electrical and I&C Connections
 - Placement of equipment on metal frame, beams, supports on ERCF
 - · Uncouple desired modules
 - Provides support for the wheel shafts to move the assembly
 - Install wheel shafts and move facility
 - Fasten ERCF to new site previously prepared
- ERCF can be moved by disassembly and reassembly
 - Unit designed for truck transport

Third Generation: FOSSEA Decommissioning and Evacuation of Pits

MOBILE HOT CELL

- ► F5 and F6 pit at Cadarache are interim storage facilities for remote handled mixed and radioactive waste
- Project : Design, Construct (current phase), test and operate MHC to:
 - Retrieve radioactive waste with portable module
 - Characterize and repackage waste and transfer to a transport cask for final disposal (CEDRA)

GENERAL OVERVIEW

NDA FOSSEA TECHONOLOGY

- NDA and Packaging cell :
 - Process:
 - Cask interface
 - Decontamination
 - Characterization :
 - HGRS (High Resolution Gamma Spectroscopy)
 - IPAN (Imaging Passive- Active Neutron)
 - Packaging (if needed)
- Control Room
- Electrical Rooms
- Ventilation building

Adaptation of European Technology: Processing of Remote Handled TRU Waste Hanford

Proposed Modular Hot Cell at Hanford

- ► Value Engineering study concluded the MHC will be an integral part of the Alpha Caisson Waste Retrieval System that will:
 - Enhance Operations and Maintenance
 - Maximize use of proven technology
 - Facilitate re-use with other site caisson cleanup in mind
 - Optimize Cost and Schedule effectiveness
 - Mitigate Risk

HANFORD: Functional Diagram

MHC Mission at Hanford

Produce Certifiable RH TRU Waste Packages:

- Retrieve Remote-Handled TRU Waste
- Sort all waste
- Characterize (VE/NDA and Physical Sampling)
- Reduce size
- Package (WIPP Certifiable)

ADVANTAGES OF AREVA TECHNOLOGY

- Existing technology in operation by AREVA (design not based on development or references)
- Specific design using lessons learned from existing operations - proven technology lowers project risk
- Waste can be processed "on-site" (shipping across site not necessary)
- Does not require the D & D of existing facilities and associated worker dose
- Does not require the construction of any new fixed facilities

ADVANTAGES OF AREVA TECHNOLOGY (cont)

- Process can be entirely qualified in cold tests
- Limited on-site fabrication/construction activities (Minimal impact on site operations)
- Modular process
- Reusable for other cleanup missions

